Introduction to Software Design

P04. Hangman

Yoonsang Lee
Spring 2020

Midterm Exam Announcement

Introduction

ASCII Art

“Hangman”

— Sample Run

— Source Code

Designing the Program
Code Explanation

Things Covered In This Chapter

ASCII Art

* ASCII Art

— Half of the lines of code in the Hangman aren't really code at all.

— Multiline Strings that use keyboard characters to draw pictures.
» ASCII stands for American Standard Code for Information

/o oEx XXX 5,

/ﬁ X¥ H¥K X_}Q{—_\
_ KK KEX XX HHK N

J e KX P P P xHHY
_ / < /N b xxh

|) / VY b4 HE N
|) \ AN | \ %\
(v) \ Y | \ Z xN
A \ | A Y z KX |
| \] Nz |
| | N 5 A
| \ / _ | \
			L	®xx
	A /o e _/ x			
	- O /			
N O e e L A Ve —— _/ _/ _/ xx /
L0 /o oo\ o / -/ xx/
\ N _/ xx [/
, , / x_/
\ /
\ /

“Hangman”

e Sample Run

HANGMAN

Missed letters: Missed letters:

_ _ _ _a _
Guess a letter. @Euess a letter.
a o
+---+ +---+ +---+
o | o | o |
Missed letters: or
Missed letters: o Missed letters: or _a t
_a _ _a _ Guess a letter.
Guess a letter. Guess a letter. a
r t You have already guessed that letter. Choose again.
Guess a letter.
c
Yes! The secret word is "cat"! You have won!

Do you want to play again? (yes or no)
no

“Hangman”

« Source Code(1/4)

impor b random
HANGMAN_PICS = [""°

+———+
|
|
Illl [I I)
—— .
0 |
|
Illl [I I)
— .
0 |
| |
Illl [I I)
— .
0 |
£ |
Illl [I I)
— .
0 |
/19 |
Illl [I I)
——— .
0 |
/19 |
i |
— .
0 |
/19 |
VA | | |
words = "ant baboon badger bat bear beaver camel cat clam cobra cougar W
covote crow deer dog donkewvy duck eagle ferret fox frog goat goose hawk W
lion lizard | lama mole monkey moose mouse mule newt otter owl panda W

parrot pigeon python rabbit ram rat raven rhino salmon seal shark sheep W
skunk sloth snake spider stork swan tiger toad trout turkey turtle weasel W
hale wolf wombat zebra'.split()

“Hangman”

« Source Code(2/4)

det

det

getRandomWord(wordList):

¥ This function returns a random string from the passed list of strings.
wordIindex = random.randint(0, len{wordList) - 1)

return wordl ist[wordIndex]

displayBoard(missedlLetters, correctlLetters, secretWord):
print(HANGMAN_PICS[len(missedLetters)])

print()
print('Missed letters:', end=' ')
for letter in missedLetters:
print{letter, end=" ')
print()
blanks = '_' * |en(secretWord)
for i in range(len(secretWord)): § replace blanks with correctly guessed let
't secretWord[i]l in correctlLetters:
blanks = blanks[:i] + secretWord[i] + blanks[i+1:]
for letter in blanks: } show the secret word with spaces in between each let

print(letter, end=" ')
print()

“Hangman”

« Source Code(3/4)

det getGuess(alreadyGuessed):
Returns the letter the plaver entered. This function makes sure the plaver
while True:
print{ 'Guess a letter."')

guess = input()
guess = guess. lower()
it len(guess) !'= 1:

print('Please enter a single letter.")
elit guess in alreadyGuessed:

print('You have already guessed that letter. Choose again."')
elif guess not in 'abcdefghijk|Imnoparstuvwxyz':

print('Please enter a LETTER."')
else:

return guess

def playAgain():
¥ This function returns True if the player wants to play again; otherwise, i
print{'Do vou want to play again? (ves or no)"')
return input().lower() .startswith('y')

print(C'HANGMAN'")
missedLetters = "°
correctlLetters =
secretWord = getRandomWord(words)
game | sDone False

“Hangman”

« Source Code(4/4)

while True:
displayBoard(missedLetters, correctLetters, secretWord)

¥ Let the plaver enter a letter.
guess = getGuess(missedlLetters + correctlLetters)

it guess in secretWord:
correctletters = correctlLetters + guess

Check if the player has won.
foundAl ILetters = True
for i in range(len(secretWord)):

it secretWord[i]l not in correctlLetters:
foundAl lLetters = False
break
it foundAl lLetters:
print('Yes! The secret word is "' + secretWord + '"! You have won!"')

gamelsDone = True
else:
missedlLetters = missedlLetters + guess

Check if player has guessed too many times and lost.
it len{missedLetters) == len(HANGMAN_PICS) - 1:
displayBoard(missedLetters, correctLetters, secretWord)
print(*'You have run out of guesses!WnAfter ' + str(len(missedLetters)) + W

game|shone = True ' missed guesses and ' +W
¥ Ask the player if they want to play again (but only if the game is dorstr(len(correctletters)) + W
it 93';'3'?002&: in0): ' correct guesses, the word was "W
ayAgain(): .
| pmi:sgdLetters = " + secretWord +)
correctlLetters = *°

gamelsDone = [alse
secretWord = getRandomWord(words)
else:

.l)l(hik

Designing the Program

 Designing a Program with a Flowchart

— Create a flow chart to help us visualize what this program
will do.

— Aflow chart Is a diagram that shows a series of steps as a
number of boxes connected with arrows.

— Begin your flow chart with a Start and End box.

STERT

END

Designing the Program

« Designing a Program with a Flowchart

— Draw out the first two steps of Hangman as boxes with
descriptions.

Come up with a
secre+ word.

\
Qsh PIQH"EF :
BUEEE ﬂ. !e++Er l

Designing the Program

« Designing a Program with a Flowchart

— There are two different things that could happen after
the player guesses, so have two arrows going to separate

bOXES . START

Come up with a
secre+ word.

Ask. ployer +0
guess i le++er.

L]

' o o| Lett+er is not in||
| Letter is in !
I | secre+ word., secret word.

\

i
1
[
I

Designing the Program

« Designing a Program with a Flowchart

— After the branch, the steps continue on their separate
paths.

START

—

Come up with a
secred+ word.

)

Ask player +o
guess o le+ter,

Moo sin ' Letter s ndt in
secret word, secred word,

i e

| Plaver has quessed all | v ' pigver has run
! ;

L
I
L]
| parts and loses. Il

Designing the Program

» Designing a Program with a S

Flowchart Core e
— The game ends if the player o v
doesn't want to play again, guess o lerver

or the game goes back to the S E—
Letter 5 in Letter s not in
beginning. secred word. secret word,

l L

Player has guessed all Player has run
letters and wins, out of body ‘[
parts and loses.

Fsk player +o
plovy aginh, !

Designing the Program

* Designing a Program with a ;e
Flowchart

— The game does not always end
after a guess. The new arrows
show that the player can guess

Come up with @
secret word,

1

lil ﬂ?l"\ P|L1\1|'€r +0 .

-

Letter s ndt in

;LEHEr 5 ir

a. ain > 1 secre+ word, secret mor{i _
gain. <)
__f
Player has ﬂu&:ﬁed all Player has run
le+ters ond wins, out of body

parts and loses.
ﬂ:H pf(.h,rEr. +0 END
plity again,

Designing the Program

« Designing a Program with a
Flowchart
— Adding a step In case the

player guesses a letter they
already guessed.

START

Come up with a
secred word,

1

Ask player +o
guess a letter.

Letter s in
secred word.

Letter s not in)

secred word,

Ployer has gumed all
leHers and wins,

L

Player has run

parts and loses.

out of body

FAsk player +o
plovy asain.

END

Designing the Program

« Designing a Program with a
Flowchart

— Adding "Show the board and
blanks to the player." to give the
player feedback.

Ployer has ﬂuessed all
leHters and wins.

ploy a.guu‘n.

Code Explanation

 How the Code Works

random

— The Hangman program is going to randomly select a
secret word from a list of secret words.

— This means we will need the random module imported.

Code Explanation

 How the Code Works

— This "line" of code is a simple variable assignment.

— but it actually stretches over several real lines in the
source code.

HANGMANPICS = ['''

...the rest of the code is too big to show here...

Code Explanation

* Multi-line Strings

— 1f you use three single-quotes instead of one single-
quote to begin and end the string, the string can be on
several lines.

>>> fizz = '''Dear Alice,

I will return home at the end of the month. I will see you then.
Your friend,

BOb' L |

>>> print(fizz)

Dear Alice,

I will return home at the end of the month. I will see you then.
Your friend,

Bob

Code Explanation

* Multi-line Strings

— we would have to use the \n escape character to
represent the new lines.

— which can make the string hard to read in the source
code.

>>> fizz = 'Dear Alice,\nI will return home at the end of the month.
I will see you then.\nYour friend, \nBob'

>>> print (fizz)

Dear Alice,

I will return home at the end of the month. I will see you then.
Your friend,

Bob

Code Explanation

* Multi-line Strings

— Do not have to keep the same indentation to remain in
the same block.

— Within the multi-line string, Python ignores the
Indentation rules it normally has for where blocks end.

def writeletter () :

inside the def-block
print '''Dear Alice,
How are you? Write back to me soon.

Sincerely,

Bob''')# end of the multd-line string and print statement
print ('P.S. I miss you.') # still inside the def-block

writeLetter () # This is the first line outside the def-block.

Code Explanation

« Constant Variables
— HANGMAN_PICS's name is in all capitals.

— This Is the programming convention for constant
variables.

— Constants are variables whose values do not change
throughout the program.

>>> eggs = 72

>>>

>>> DOZEN = 12

>>> eqggs = DOZEN * 6
>>> eggs

72

Code Explanation

e Lists
— A list value can contain several other values iIn it.

— This is a list value that contains three string values.

— Just like any other value, you can store this list in a
variable.

>>> spam = ['apples', 'oranges', 'HELLO WORLD']
>>> spam
['apples', 'oranges', 'HELLO WORLD']

Code Explanation

e Lists

— The individual values inside of a list are also called
Items.

— The square brackets can also be used to get an item
from a list.

— The number between the square brackets is the index.

>>> animals = ['aardvark', 'anteater', 'antelope', 'albert']
>>> animals[0]
'aardvark'

>>> animals|[1l]
'anteater'’

>>> animals|[2]
'antelope'

>>> animals|[3]
'albert'

Note that the list index start at 0, not 1

Code Explanation

e Lists

— L.ists are very good when we have to deal with lots of
values.

— but we don't want variables for each one.
— Otherwise we would have something like this:

>>> animalsl = 'aardvark'
>>> animals2 = 'anteater'
>>> animals3 = 'antelope'
>>> animals4 = 'albert'

Code Explanation

e Lists

— Using the square brackets

 you can treat items in the list just like any other value.

* the expression animals[0] + animals[2] is the same as 'aardvark’ +
‘antelope’.

>>> animals[0] + animals|[2]
'aardvarkantelope'

Code Explanation

« What happens if we enter an index that is larger
than the list's largest index?

>>> animals = ['aardvark', 'anteater', 'antelope', 'albert']
>>> animals[4]

>>> animals = ['aardvark', 'anteater', 'antelope', 'albert']
>>> animals[99]

— IndexError: list index out of range

Code Explanation

« Changing the Values of List Items with Index

Assignment

— Use the square brackets to change the value of an item

In a list.

 overwritten with a new string.

>>> animals = ['aardvark',6 |'anteater’

>>> animals[l] = 'ANTEATER'
>>> animals
['aardvark', |'ANTEATER'|, 'antelope',

r

"antelope',

'albert']

'albert']

Code Explanation

e List Concatenation
— Join lists together into one list with the + operator.
— this i1s known as list concatenation.

>>> [1, 2, 3, 4] + ['apples', 'oranges'] + ['Alice', 'Bob']
[1, 2, 3, 4, 'apples', 'oranges', 'Alice', 'Bob']

Code Explanation

e The in Operator
— Makes it easy to see if a value is inside a list or not.

— EXxpressions that use the in operator return a Boolean
value.

— True If the value is In the list
— False if the value is not in the list.

>>> animals = ['aardvark', 'anteater', 'antelope', 'albert']
>>> 'antelope' animals
True

Quiz #1

* Go to https://www.slido.com/
* Join #isd-hyu
* Click “Polls”

« Submit your answer in the following format:

— Student ID: Your answer
— e.g. 2017123456: 4)

* Note that you must submit all quiz answers in the
above format to be checked as “attendance”.

https://www.slido.com/

Code Explanation

* Removing ltems from Lists with del Statements
— You can remove items from a list with a de 1 statement.

>>> spam = [2, 4, 6, 8, 10]
>>> spam[1]

>>> spam

[2, 6, 8, 10]

>>> spam[1]

>>> spam

[2, 8, 10]

>>> spam[1]

>>> spam

[2, 10]

Code Explanation

o Lists of LIists

— L.ists are a data type that can contain other values as
items In the list.

— These 1tems can also be a lists.

>>> groceries = ['eggs', 'milk', 'soup', 'apples', 'bread']
>>> chores = ['clean', 'mow the lawn', 'go grocery shopping']
>>> favoritePies = ['apple', 'frumbleberry']

>>> listOfLists = [groceries, chores, favoritePies]

>>> listOfLists

[['eggs', 'milk', 'soup', 'apples', 'bread'], ['clean', 'mow

the lawn', 'go grocery shopping'], ['apple',6 'frumbleberry']]

Code Explanation

o Lists of LIists

— You could also type the following and get the same
values for all four variables.

>>> 1listOflists = [['eggs', 'milk', 'soup',K 'apples', 'bread']
, ['clean', 'mow the lawn', 'go grocery shopping'], ['apple',
'frumbleberry']]

>>> groceries = listOfLists[O0]

>>> chores = listOfLists[1]

>>> favoritePies = listOflLists[2]

>>> groceries

['eggs', 'milk', 'soup', 'apples', 'bread']
>>> chores
['clean', 'mow the lawn', 'go grocery shopping']

>>> favoritePies
['apple', 'frumbleberry']

Code Explanation

o Lists of Lists
— The indexes of a list of lists.

= Gemmm—— (0]
= X[0][0]
8 x[0][1]
_ . _ _ 8 x[0][2]
-] — [i K
F R FRRCS 15311 pubot
I N IV o x[1][1]
o oy flodom o = x[11[2]
oo 2o Eoo prdy b = gy [2]
>, > >, 4 x o= o K
[[i0, 2o, 301, [3, 2, 11, [&8, &, &, 8], [42]] - K[Z] [1]
o x[2][2]
2 x[2][3]
i~ x[3
= ST 3]

Code Explanation

 List of multi-line strings
— Assign a list to the variable words.

words = 'ant baboon badger bat bear beaver camel cat

clam cobra cougar coyote crow deer dog donkey duck
eagle ferret fox frog goat goose hawk lion lizard 11
ama mole monkey moose mouse mule newt otter owl pand
a parrot pigeon python rabbit ram rat raven rhino sa
Ilmon seal shark sheep skunk sloth snake spider stork

swan tiger toad trout turkey turtle weasel whale wo
1f wombat zebra'.split()

Function / Method

Function
— function_name(arguments)
— EX. print('test’)

« Method: A function that is attached to a class object (instance)
— object.method _name(arguments)
— EX. 'hello world'.split()

e c.f. module name.function_name(arguments)
— Ex. random.randint(10,20)

* We won't cover Python's class. Instead, we'll cover the similar
concept in C later — the structure

Code Explanation

 Methods

— Methods are just like functions, but they are always attached
to a value.

— The 1lower () and upper () String Methods

>>> 'Hello world'.lower ()
"hello world'
>>> 'Hello world' .upper()
"HELLO WORLD'

— Can call a string method on that variable

>>> fizz = 'Hello world'
>>> fizz . upper()
'"HELLO WORILD'

Code Explanation

 Think about:

>>> 'Hello world' .upper() .lower()

>>> 'Hello world'.lower () .upper()

Code Explanation

Methods
— The reverse () List Method

» reverse the order of the items in the list.

>>> spam = [1, 2, 3, 4, 5, 6, 'meow',

>>> spam.reverse ()
>>> spam
['woof', 'meow', 6, 5, 4, 3, 2, 1]

'"woof']

Code Explanation

* Methods
— The append () List Method

« add the value you pass as an argument to the end of the list.

>>> eggs []

>>> eqggs.append('hovercraft')
>>> eggs

[' hovercraft']

>>> eggs.append('eels')

>>> eggs

['"hovercraft', 'eels']
>>> eggs.append(42)
>>> eggs

['hovercraft', 'eels',6K 42]

Code Explanation

 Methods
— The split () Str Method

» This line is just one very long string, full of words separated by spaces.

 The split () method changes this long string into a list, with each
word making up a single list item.

words = 'ant baboon badger bat bear beaver camel cat

clam cobra cougar coyote crow deer dog donkey duck
eagle ferret fox frog goat goose hawk lion lizard 11
ama mole monkey moose mouse mule newt otter owl pand
a parrot pigeon python rabbit ram rat raven rhino sa
Ilmon seal shark sheep skunk sloth snake spider stork

swan tiger toad trout turkey turtle weasel whale wo
1f wombat zebra'.split()

Code Explanation

* Methods
— The split () List Method

« For an example of how the split () string method works.

>>> 'My very energetic mother just served us nine pies'.split()
['My', 'very', 'energetic', 'mother', 'Jjust', 'served', 'us',6 '
nine', 'pies']

Code Explanation

e The 1en () Function

— Takes a list as a parameter and returns the integer of how
many items are in a list.

>>> animals = ['aardvark', 'anteater', 'antelope', 'albert']
>>> len(animals)

4

>>> people = ['Alice', 'Bob']

>>> len (people)

2

>>> len(animals) + len (people)
6

Code Explanation

e The 1en () Function

— The square brackets by themselves are also a list value
known as the empty list.

>>> len([])

0

>>> spam = []
>>> len (spam)
0

Code Explanation

 The getRandomWord () Function
e Gets arandom item in wordList atwordIndex.

* Does this by calling randint () with two arguments.

* The reason we need the - 1 is because the indexes for lists start at O.

getRandomWord (wordList) :

This function returns a random string from the

passed list of strings.
wordIndex = random.randint (0, len (wordList)
wordList [wordIndex]

- 1)

Code Explanation

e The displayBoard () Function
— This function has three parameters.

def displayBoard(missedLetters, correctlLetters, secretWord):
print (HANGMAN PICS[len(missedLetters)])
print ()

missedLetters | 2@ Stfing made up of the letters the player has guessed that a
re not in the secret word.

correctLetters |2 s_trlng made up of the letters the player has guessed that a
re in the secret word.

secretWord the secret word that the player is trying to guess.

Code Explanation

« for loop

— The for loop is very good at looping over a list of values.

» begins with the £or keyword, followed by a variable name, the in keyword, a
sequence or a range object, and then a colon.

— Syntax
for index variable 1in list variable
loop body

for 1index variable 1in string variable
loop body

 range () function

— returns a sequence of integers (as a "range" object)
— range (stop)
— range (start, stop[, stepl)

Code Explanation

« for Loops
— For example

>>> for 1 in range(10):
print 1i

O oo JdJo0 0k WNKE O

Code Explanation

« for Loops
— we used the for statement with the list instead of
range ().
>>> i [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]:
print 1

OO0 JdJobhhd WNNERE O

for loop

« for Loops
— For example
for i in range(10): for i in range(1,10): for i in range(10,0,-1):
print (i) print (i) print (i)
0 1 10
1 2 9
2 3 8
3 4 7
4 5 6
5 6 5
6 7 4
7 8 3
8 9 2
9 1

Quiz #2

* Go to https://www.slido.com/
* Join #isd-hyu
* Click “Poll”

« Submit your answer in the following format:

— Student ID: Your answer
— e.g. 2017123456: 4)

* Note that you must submit all quiz answers in the
above format to be checked as “attendance”.

https://www.slido.com/

Code Explanation

« for Loops
— Assingle character from the string can be displayed on
each iteration. >>> i 'Hello world!':

print i

OHKHOD X

-2 HHK O %

Code Explanation

« for Loop

— This for loop will display all the missed guesses that
the player has made.

— IfmissedLetters was'ajtw’,
then this for loop would display a 7 t w.

print('Missed letters:', end=' ")
letter missedLetters:
print(letter, end=" ")
print()

Code Explanation

« Awhile Loop Equivalent of a for Loop

— You can make a while loop that acts the same way as a
for loop by adding extra code.

>>> sequence = ['cats', 'pasta', 'programming', 'spam']
>>> index = 0
>>> (index < len (sequence)) :

thing = sequence[index]

print 'I really like ' + thing
index = index + 1

really like cats

really like pasta
really like programming
really like spam

HHHH

Code Explanation

 The range () Function
— When called with one argument,

— range () will return a range object of integers from 0
up to the argument.

>>> list (range (10))

(0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> list (range (10000))

[0, 1, 2, 3, 4, 5, ¢, 7, 8, 9, 10, 11, 12, 13, 14, 15,...
... The text here has been skipped for brevity...

...9989, 9990, 9991, 9992, 9993, 9994, 9995, 9996, 9997,
9998, 9999]

Code Explanation

 The range () Function
— The list Is so huge, that it won't even all fit onto the
screen.

— But we can save the list into a variable just like any
other list.

>>> spam = list(range(10000))

— If you pass two arguments to range(),

— The list of integers it returns is from the first argument
up to (but not including) the second argument.

>>> list(range (10, 20))
[0, 11, 12, 13, 14, 15, 16, 17, 18, 19]

Code Explanation

 Displaying the Secret Word with Blanks

— Now we want to print the secret word, except we want
blank lines for the letters.

— We can use the _ character (called the underscore
character) for this.

secret word blanked string
otter (five _ characters)
correctLetters blanked string

rt ttr

Code Explanation

 Displaying the Secret Word with Blanks

— * operator can also be used on a string and an integer.

» SO the expression 'hello' * 3 evaluatesto
'hellohellohello'

— This will make sure that b1 anks has the same number
of underscores as secretWord has letters.

blanks = ' ' = |en(secretWord)
i range(len(secretWord)): ¥ replace blanks with correctly guessed let

secretWord[i] correctlLetters:
blanks = blanks[:i] + secretWord[i] + blanks[i+1:]

Code Explanation

 Strings Act Like Lists
— Just think of strings as “list” of one-letter strings.

>>> f£izz = 'Hello world!'
>>> £1zz[0]
lHl

— You can also find out how many characters are in a
string with the 1en () function.

>>> fizz = 'Hello world!'
>>> £i1zz[0]

lHl

>>> len(fizz)

12

Code Explanation

 Strings Act Like Lists

— You cannot change a character in a string or remove a
character with de 1 statement.

— List: mutable sequence (changeable)
— String: immutable sequence (cannot be changed)

Sequences

(Immutable)

Strings

(Mutable)
Lists

Code Explanation

 List Slicing
— Like indexing with multiple indexes instead of just one.
— list[start

stop

steps]|]

— start element is included, but stop element is not
Included.

>>> animals
>>> animals
["aardvark'

>>> animals
['antelope'’

= ['aardvark',6 'anteater',
[0:3]

, 'anteater', 'antelope']
[2:4]

, 'albert']

'antelope',

"albert']

Code Explanation

 List Slicing
— list[start : stop : steps]
— Default value of start is 0, stop is the length of list, and
stepis 1
— [: stop] will slice list from starting till stop index
— [start :] will slice list from start index till end

— [-1] prints list in reverse order.
— You can use slicing for strings as well.

Quiz #3

* Go to https://www.slido.com/
* Join #isd-hyu
* Click “Poll”

« Submit your answer in the following format:

— Student ID: Your answer
— e.g. 2017123456: 4)

* Note that you must submit all quiz answers in the
above format to be checked as “attendance”.

https://www.slido.com/

Code Explanation

* Replacing the Underscores with Correctly Guessed
Letters

— Let's assume that

* the value of secretWord is 'otter’
 thevaluein correctlLetters is 'tr'

— Then len (secretWord) will return 5.

— Then range (len (secretWord)) becomes range (5),
which in turn returns the list [0, 1, 2, 3, 4].

i range (len (secretWord)) :
secretWord[i] correctlLetters:
blanks = blanks[:1] + secretWord[i] + blanks[i+1l:]

Code Explanation

* Replacing the Underscores with Correctly Guessed Letters
— The value of 1 will take on each valuein [0, 1, 2, 3, 4]
— then the £or loop code is equivalent to this (called loop

unrolling).

secretWord[0] correctLetters:

blanks = blanks[:0] + secretWord[0] + blanks|[1l:
secretWord[1l] correctLetters:

blanks = blanks[:1] + secretWord|[l] + blanks[2:
secretWord[2] correctLetters:

blanks = blanks[:2] + secretWord[2] + blanks[3:
secretWord[3] correctLetters:

blanks = blanks[:3] + secretWord[3] + blanks[4:
secretWord[4] correctLetters:

blanks = blanks[:4] + secretWord|[4] + blanks|[5:

Code Explanation

* Replacing the Underscores with Correctly Guessed
L_etters

— The following shows the values of the variable
secretWordand blanks.

— With the index for each letter in the string

0 1 2 3 4
0 1 2 3 4

Code Explanation

* Replacing the Underscores with Correctly Guessed

L_etters

— The unrolled loop code would be the same as this.

if 'o' in 'tr': # False, blanks == ' '

blanks = '' + 'o' + ' ' # This line
if 't' in 'tr': # True, blanks == ' !
blanks = ' ' + 't'" + ' ' # This line
if 't' in 'tr': # True, blanks == ' t
blanks = ' t' + 't' + ' ' # This line
if 'e' in 'tr': # False, blanks == ' tt '
blanks = ' tt' + 'e' + ' ' # This line
if 'r' in 'tr': # True, blanks == ' tt
blanks = ' tt ' + 'r' + '' # This line

blanks now has the wvalue '_tt_r'

is

is

is

is

is

skipped.
executed.
executed.
skipped.

executed.

Code Explanation

* Replacing the Underscores with Correctly Guessed
L_etters

— This for loop will print out each character in the string
blanks.

— Show the secret word with spaces in between each letter

letter blanks: ¥ show the secret word with spaces in between each let
print(letter, end=' ')
print()

Code Explanation

e (et the Player's Guess

— The getGuess ()
« called whenever we want to let the player type in a letter to guess.

— while loop

* it will loop forever (unless it reaches a break statement).
« Such a loop is called an infinite loop.

getGuess(alreadyGuessed):
Returns the letter the plaver entered. This function makes sure

Drint(:Guesz a letter.")
guess input()
guess = guess. |lower()

Code Explanation

« Making Sure the Player Entered a Valid Guess
— The guess variable contains the text the player typed in
for their letter guess.

— The 1 f statement's condition checks that the text is one
and only letter.

1f len(guess) != 1:
print 'Please enter a single letter.'

elif guess in alreadyGuessed:
print 'You have already guessed that letter. Choose again.'

elif guess not in 'abecdefghijklmnopgrstuvwxyz':
print 'Please enter a LETTER.'

else:
return guess

Code Explanation

* Making Sure the Player Entered a Valid Guess
— The e1 1 f statement.

1f lenfguesz) !'= 1:

print('Please enter a sSingle letter.')
ellif guess 1in alreadyGuessed:

print('¥You hawe already guessed that letter.!']
2lif gueszs not in 'asbodefghijklmnopdgrstuvuxyz! .

print('Please enter & LETTEER.']

elae:
return guess

One and only one of these blocks will execute.

Code Explanation

 Asking the Player to Play Again
— The playAgain () function

* justaprint () function call and a return statement

» The function call is input () and the method calls are 1ower () and
startswith('y")

def playvAgain():
This function returns True if the plaver wants to play again.;
print('Do vou want to play again? (ves or no)')
return input() . lower() .startswith('vy")

Code Explanation

 Asking the Player to Play Again

— Here's a step by step look at how Python evaluates this
expression if the user types in YES.

input() .lower () .startswith('v')

!

'YES'.lower () .startswith('y"')

!

'yves'.startswith('v')

!

True

Code Explanation

* Review of the Functions We Defined

— getRandomWord (wordList)

— displayBoard (missedLetters,

correctlLetters, secretWord)
— getGuess (alreadyGuessed)

— playAgain ()

Code Explanation

* Review of the Functions We Defined
— The complete flow chart of Hangman.

START

Come up with a
secret+ word,
Player already

Show +he board and

ques sed +his lerter.

blanks +o +he player.
; Bsk player +o
fuess a lett+er,

Letter is in | Letter s not in
secret word. secret word,

1

Player has guessed all Player has run
let+ers and wins. out of body

parts and loses.
Fsk Player +0 | —— END
ploy u.gal'n.

Code Explanation

* The Main Code for Hangman
— Setting Up the Variables

 This is where the program executes really starts.

print(C'HANGMAN')

missedl etters = "'

correctlLetters = "’

secretWord = getRandomWord{words)
game |l sDone =

Code Explanation

 Displaying the Board to the Player
— The while loop's condition is always True
— The program loops forever until a break statement.
— It executes a break statement, when the game Is over.

True:
displayBoard (missedLetters,
correctLetters, secretWord)

Code Explanation

 Letting the Player Enter Their Guess

— Remember that the function needs all the letters in
missedlLetters and correctLetters combined.

Let the player type in a letter.
guess = getGuess (missedlLetters + correctLetters)

* Checking if the Letter is in the Secret Word

— It concatenate the letter in guess to the
correctLetters string

guess secretWord:
correctLetters = correctlLetters + guess

Code Explanation

* Checking if the Player has Won
— The only way we can be sure the player won is

— to go through each letter in secretWord and see if it
exists in correctlLetters.

Check if the player has won
foundAlllLetters = True
i range (len (secretWord)) :
secretWord[i] correctLetters:
foundAllletters = False

Code Explanation

* Checking if the Player has Won
— This is a simple check to see if we found all the letters.
— If we have found every letter in the secret word
— we should tell the player that they have won.

foundAlllLetters:

print 'Yes! The secret word is "' + secretWord +
'""! You have won!'

gamelsDone = True

Code Explanation

* When the Player Guesses Incorrectly

— This is the start of the e1 se-block.

— the code in this block will execute iIf the condition was
FFalse.

— The player's guessed letter was wrong
— we add it to the mi ssedLetters string.

missedLetters = missedLetters + guess

Code Explanation

* When the Player Guesses Incorrectly
— How we know when the player has guessed too many
times?

— Remember that each time the player guesses wrong,

* The program add the wrong letter to the string inmissedLetters.
* The length of missedLetters can tell us the number of wrong

guEesSEs.
Check if player has guessed too many times and lost
len (missedLetters) == len (HANGMANPICS) - 1:
displayBoard (missedLetters, correctLetters,

secretWord)

print 'You have run out of guesses!\nAfter ' + str(len(m
issedLetters)) + ' missed guesses and ' + str(len(correctletters)) +
' correct guesses, the word was "' + secretWord + '"'

gameIsDone = True

Code Explanation

* When the Player Guesses Incorrectly
— len (HANGMANPICS) - 1

— When we read the program code later, we should know
why this program behaves the way it does.

— Of course, It Is a good idea to leave a comment to
remind yourself and possibly others to use your code.

len (missedLetters) == 6:
#6 is the last index in the HANGMANPICS list

— But it Is better to use 1en (HANGMANPICS) - 1
Instead.

Code Explanation

* When the Player Guesses Incorrectly

— If the player won or lost after guessing their letter

— then our code would have set the gameIsDone
variable to True.

— If this is the case, we should ask the player if they want
to play again.

Ask the player if they want to play again
(but only if the game is done).

gamelsDone:
playAgain() :
missedLetters = '
correctLetters = '
gameIsDone = False

secretWord = getRandomWord (words)

Code Explanation

* When the Player Guesses Incorrectly
— If the player typed in 'no’

— return value of the call to the playAgain () function
would be False

— the el se-block would have executed.

Code Explanation

« Making New Changes to the Hangman Program

— We can easily give the player more guesses

— by adding more multi-line strings to the
HANGMANPICS list, [===—=————=—="",

Code Explanation

« Making New Changes to the Hangman Program

— We can also change the list of words.
« colors, shapes, fruits

words = 'red orange vellow green blue indigo
violet white black brown'.split()

words = 'square triangle rectangle circle ell
ipse rhombus trapazoid chevron pentagon hexag
on septagon octogon'.split()

words = 'apple orange lemon lime pear waterme

lon grape grapefruit cherry banana cantalope
mango strawberry tomato'.split()

Sequence Types

1. Tuple tu = (23, rabc’, 4.56, (2,3), ‘def’)

* Asimple immutable ordered sequence of items
* Items can be of mixed types, including collection types

2. Strings st = ‘Hello World’
* Immutable
« Conceptually very much like a tuple

3 List 1i = [“abc”, 34, 4.34, 23]
* Mutable ordered sequence of items of mixed types

http://tdc-www.harvard.edu/Python.pdf

Sequence Types 2

* We can access individual members of a tuple, list, or string
using square bracket “array” notation.

* Note that all are 0 based...

>>> tu = (23, ‘abce’, 4.56, (2,3), ‘def’)
>>> tul[l] # Second item in the tuple.

>>> 11 = [“abc”, 34, 4.34, 23]
>>> 11[1] # Second item 1n the list.
34

>>> gt = “Hello World”

>>> st[1] # Second character 1n string.

Slicing: Return Copy of a Subset 2

>>> t = (23, ‘abc’, 4.5¢, (2,3), ‘def’)

Omit the first index to make a copy starting from the beginning
of the container.
>>> t[:2]

L B 1

(23, ‘abc’)

Omit the second index to make a copy starting at the first index
and going to the end of the container.

>>> t[2:]
(4.56, (2,3), 'def’)

The ‘in’ Operator

* Boolean test whether a value is inside a container:
>>> t = [1, 2, 4, 5]
>»> 3 1in t
Falsze
>>> 4 1in t
True
=3 4 . 1 ¢
False

* For strings, tests for substrings
>>»> a = 'abcde'
>>»> '¢' in a
True
>>»>» 'ed!' in a
True
>>> 'ac' in a
False

* Be careful: the in keyword is also used in the syntax of
for loops and list comprehensions.

The + Operator

* The + operator produces a new tuple, list, or string whose
value is the concatenation of its arguments.

>>> (1, 2, 3) (4, 5, @)
(1, 2, 3, 4, 5, ©6)

>>> [1, 2, 3] + [4, 5, €]
1, 2, 3, 4, 5, 6]

}:}} “H'Ellk'._-:'” + LA ir _I_ “[ﬂ;ll_jl.l:_jﬁ

‘Hello World’

The * Operator

* The * operator produces a new tuple, list, or string that
“repeats” the original content.

S>> (1, 2, 3) * 3
l::lnf 2!‘ 3! lf 2!‘ 3! J‘f 2! 3::'
>>> [1, 2, 3] * 3

(1., 2, 3, 1, 2, 3, 1, 2, 3]

>>> “Hello” * 3
‘HelloHelloHello'

Dictionaries

 Dictionaries
— A collection of many values.

— Accessing the items with an index (the indexes are
called keys) of any data type (most often strings).

>>> stuff = {'hello':'Hello there, how are you?', '
chat':'How is the weather?', 'goodbye':'It was nice
talking to you!'}

Dictionaries

e Dictionaries

— Curly braces { and }

— On the keyboard they are on the same key as the square
braces [and].

— We use curly braces to type out a dictionary value in Python.
— The values in between them are key-value pairs.

>>> stuff|'hello']

'"Hello there, how are you?'
>>> stuff['chat']

'"How is the weather?'

>>> stuff['goodbye']

'It was nice talking to you!'

Dictionaries

« (Getting the Size of Dictionaries with 1en ()
— You can get the size with the 1en () function.

>>> len(stuff)
3

— The list version of this dictionary would have only the
values.

>>> listStuff = ['Hello there, how are vyou?', 'How
is the weather?', 'It was nice talking to you!']

Dictionaries

 The Difference Between Dictionaries and Lists

— Dictionaries are unordered.
 Dictionaries do not have any sort of order.

>>> favoritesl = {'fruit':'apples', 'number':42, 'animal':'cats'}
>>> favorites2 = {'animal':'cats', 'number':42, 'fruit':'apples'}
>>> favoritesl == favorites2

True

Dictionaries

 The Difference Between Dictionaries and Lists

— Lists are ordered.
* 50 a list with the same values in them but in a different order are not

the same.
>>> listFavsl = ['apples', 'cats', 42]
>>> listFavs2 = ['cats', 42, 'apples']
>>> listFavsl == listFavs2
False

Dictionaries

 The Difference Between Dictionaries and Lists

— You can also use integers as the keys for dictionaries.

— Dictionaries can have keys of any data type, not just
strings.

>>> myDict = {'0':"a string', 0:'an integer'}
>>> myDict[O0]

'an integer'’

>>> myDict['0']

'a string'

Dictionaries

 The Difference Between Dictionaries and Lists

— Adictionary can be used ina for loop

>>> favorites = {'fruit':'apples', 'animal':'cats',
>>> i favorites:
print 1
fruit
number
animal
>>> i favorites:

apples
42
cats

print favorites[i]

"'number' :42}

Dictionaries

 The Difference Between Dictionaries and Lists
— Dictionaries also have two useful methods
— keys () and values ()

— They return values of a type called dict keys and
dict wvalues, respectively.

>>> favorites = {'fruit':'apples', 'animal':'cats', 'number':42}
>>> list (favorites.keys())

["fruit', 'number', 'animal']

>>> list(favorites.values())

['"apples', 42, 'cats']

Dictionaries

 Sets of Words for Hangman

— S0 how can we use dictionaries in our game?

— First, let's change the list words into a dictionary
 Kkeys are strings
« values are lists of strings

98.

99.

100.

101.

words = {'Colors':'red orange yellow green blue indigo violet
white black brown'.split(),
'Shapes':'square triangle rectangle circle ellipse rhombus tra

pazoid chevron pentagon hexagon septagon octogon'.split(),
"Fruits':'apple orange lemon lime pear watermelon grape grapef
ruit cherry banana cantalope mango strawberry tomato'.split(),
'"Animals': 'bat bear beaver cat cougar crab deer dog donkey duc
k eagle fish frog goat leech lion lizard monkey moose mouse ©
tter owl panda python rabbit rat shark sheep skunk squid tiger
turkey turtle weasel whale wolf wombat zebra'.split()}

Code Explanation

e The random.choice () Function

— Change our getRandomWord () function

* it chooses a random word from a dictionary of lists of strings, instead
of from a list of strings.

* Here is what the function originally looked like:

getRandomWord (wordList) :

This function returns a random string from the

passed list of strings.
wordIndex = random.randint (0, len (wordList)
wordList[wordIndex]

- 1)

Code Explanation

e The random.choice () Function
— Change our getRandomWord () function

— Change the code in this function so that it looks like
this:

def getRandomWord (wordDict) :
This function returns a random string from the passed
dictionary of lists of strings, and the key also.
First, randomly select a key from the dictionary:
wordKey = random.choice(list (wordDict.keys()))

Second, randomly select a word from the key's list in
the dictionary:

wordIndex = random.randint (0, len (wordDict[wordKey]) - 1)

[wordDict [wordKey] [wordIndex], wordKey]

Code Explanation

e The random.choice () Function
— randint(a, b)

— return a random integer between the two integers a and
b

— choice (a) returns a random item from the list a

>>> random.randint (0, 9)
>>> random.choice (list (range (0, 10)))

Code Explanation

« Evaluating a Dictionary of Lists

— wordDict [wordKey] [wordIndex]may look kind
of complicated

— but it is just an expression you can evaluate one step at a
time like anything else.

wordDict [wordKey] [wordIndex]

t

wordDict[' 'Fruits'] [5]

t

['apple', 'orange', 'lemon', 'lime',6 'pear', 'watermelon'
, 'grape', 'grapefruit', 'cherry', 'banana', 'cantalope',
'mango', 'strawberry', 'tomato'][5]

4

'watermelon'

Code Explanation

« Evaluating a Dictionary of Lists

— There are just three more changes to make to our

program.

» The first two are on the lines that we call the getRandomWord ()
function.

» The function is called on lines 148 and 184 in the original program

147. correctlLetters = '
148. secretWord = getRandomWord (words)
149. gameIsDone = False
183. gameIsDone = False

184. secretWord = getRandomWord (words)
185. :

Code Explanation

« Evaluating a Dictionary of Lists

— We would then have to change the code as follows

147.
148.
149.
150.
151.

182.
183.
184.
185.
186.

correctLetters = "'

secretWord = getRandomWord (words)

secretKey = secretWord[1l]

secretWord = secretWord[0]

gameIsDone = False
gameIsDone = False
secretWord = getRandomWord (words)
secretKey = secretWord[1l]

secretWord = secretWord|[0]

Code Explanation

« Multiple Assignment

— An easier way by doing a little trick with assignment

statements.

* to put the same number of variables on the left side of the = sign as are
in the list on the right side.

>>> a, b, ¢ = ['apples', 'cats', 42]
>>> a

'apples'

>>> b

'cats'

>>> ¢

42

Code Explanation

 Think about:

>>> a, b, ¢, d = ['apples', 'cats',6K 42]

>>> a, b, ¢, d = ["Tapples', 'cats']

Code Explanation

« Multiple Assignment

— So we should change our code in Hangman to use this
trick

« which will end up with more compact code with fewer lines.

147. correctletters = '’
148. secretWord, secretKey = getRandomWord (words)
149. gamelsDone = False

182. gameIsDone = False

183. secretWord, secretKey = getRandomWord
(words)

184.

Code Explanation

 Printing the Word Category for the Player
— The last change

— to add a simple print statement to tell the player which
set of words they are trying to guess.

— Here is the original code:

151. True:
152. displayBoard (missedLetters,
correctletters, secretWord)

Code Explanation

 Printing the Word Category for the Player

— The last change

— Add the line so your program looks like this:

151. True:

152. print 'The secret word is in the set: '
secretKey

153. displayBoard (missedLetters,

correctLetters, secretWord)

+

Things Covered In This Chapter(1/3) 'Q

 Designing our game by drawing a flow chart before
programming.

« ASCII Art
* Multi-line Strings
e Lists

 List indexes
 Index assignment
 List concatenation
* The in operator
* The del operator
* Methods

Things Covered In This Chapter(2/3) 'Q

 The append () list method

 The lower () and upper () string methods
e The reverse () list method

 The split () list method

* The 1len () function

* Empty lists

 The range () function

« for loops

« Strings act like lists

« Mutable sequences(lists) and immutable sequences(strings)
 List slicing and substrings

Things Covered In This Chapter(3/3) 'Q

e The startswith (someString)
and endswith (someString) string methods

* The dictionary data type(which Is unordered,
unlike list data type which is ordered)

 key-value pairs
 The keys ()and values () dictionary methods.

« Multiple variable assignment, suchas a, b, c =
(1, 2, 3]

Next Time

e Labs In this week:
— Lab2: 1}A| 5-1

 Next lecture:
— 6-C01. C Basics

